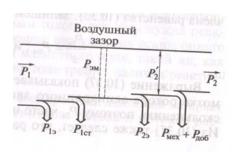
Институт электротехники

Направление подготовки Магистерская программа

13.04.02 Электроэнергетика и электротехника

Электромеханическое преобразование энергии

И


методы его исследования

Банк заданий по профильной части вступительного испытания в магистратуру

Задание №1 – вопрос (50 баллов)	
1.1	Потери мощности и КПД асинхронного двигателя, энергетическая диаграмма. Дайте пояснения по всем видам потерь.
1.2	Постройте на одном графике внешние характеристики генератора постоянного тока независимого возбуждения, параллельного возбуждения и смешанного встречного возбуждения. Поясните различия в характеристиках.
1.3	Постройте на одном графике U -образные характеристики синхронного двигателя и синхронного генератора, работающих на холостом ходу параллельно с сетью большой мощности. Поясните различие.
1.4	Постройте на одном графике внешние характеристики синхронного генератора при активной, индуктивной и емкостной нагрузке. Поясните различие.
1.5	Опишите способы регулирования активной и реактивной мощности синхронного генератора, работающего параллельно с сетью большой мощности.

Пример выполнения Задания 1.1

План ответа:

 P_1 – потребляемая двигателем из сети активная мощность;

 P_{19} – электрические потери в обмотке статора;

 $P_{1 cr}$ – магнитные потери в стали статора;

 $P_{\rm ЭM}$ — электромагнитная мощность, передающаяся от статора к ротору через воздушный зазор;

 P_{29} – электрические потери в обмотке ротора;

 $P_{\text{мех}}$ – механические потери;

 $P_{\text{доб}}$ – добавочные потери;

 P'_{2} – полная механическая мощность на валу машины;

 P_2 – полезная механическая мощность двигателя;

КПД двигателя $\eta = P_2 / P_1$

Задание №2 – задача (50 баллов)	
2.1	Промышленный асинхронный двигатель мощностью 22 кВт с напряжением 220/380 В имеет следующие номинальные значения: КПД – 88,5%, коэффициент мощности – 0,91, частота вращения – 2960 об/мин. Число зубцов статора 36, шаг катушки 11, число эффективных проводников в пазу 48, число параллельных ветвей 2. Определите число витков в фазе обмотки статора.
2.2	Промышленный асинхронный двигатель мощностью 22 кВт с напряжением 220/380 В имеет следующие номинальные значения: КПД – 88,5%, коэффициент мощности – 0,91, частота вращения – 2960 об/мин. Число зубцов статора 36, шаг катушки 11, число эффективных проводников в пазу 48, число параллельных ветвей 2. Определите номинальные фазные значения тока и напряжения обмотки статора.
2.3	Промышленный асинхронный двигатель мощностью 22 кВт с напряжением 220/380 В имеет следующие номинальные значения: КПД – 88,5%, коэффициент мощности – 0,91, частота вращения – 2960 об/мин. Число зубцов статора 36, шаг катушки 11, число эффективных проводников в пазу 48, число параллельных ветвей 2. Определите частоту тока ротора в пусковом и номинальном режимах работы.
2.4	Трехфазный асинхронный двигатель имеет следующие номинальные данные: напряжение $U_{1\text{H}}=220/380$ В, коэффициент полезного действия $\eta_{\text{H}}=81\%$, коэффициент мощности $\cos\phi_{\text{H}}=0.85$. Также известна кратность пускового тока $k_{\text{п}I}=6.5$ и параметры схемы замещения: $r_1=0.84$ Ом, r_2 ' = 0.49 Ом, $x_1=0.51$ Ом, x_2 ' = 0.81 Ом.
2.5	Промышленный двухполюсный асинхронный двигатель мощностью 15 кВт в номинальном режиме работает со скольжением 0,02. С какой скоростью поле, созданное токами ротора, вращается относительно статора?

Пример выполнения Задания 2.1

Число последовательно соединенных витков в фазе распределенной обмотки статора машины переменного тока определяется числом витков в катушке w_{κ} , числом катушек в катушечной группе (равным числу пазов на полюс и фазуq), числом полюсов 2p и числом параллельных ветвей обмотки a:

$$W_1 = 2pqw_{\kappa} / a$$

Двигатели средней и большой мощности имеют двухслойную обмотку на статоре, т.е. в каждом пазу располагается две катушечных стороны. Таким образом, число эффективных проводников в пазу $u_{\Pi} = 2 \ w_{\kappa}$. Значит, $w_{\kappa} = u_{\Pi} \ / \ 2 = 48 \ / \ 2 = 24$.

Номинальная частота асинхронного двигателя близка к синхронной скорости 3000 об/мин, т.е. число пар полюсов двигателя p=60f / $n_{\rm c}=60.50$ / 3000=1 (частота сети для промышленного двигателя может быть принята f=50 Γ ц).

Число зубцов статора Z = 2pmq. Тогда, число пазов на полюс и фазу q = Z / (2pm) = = 36 / (2·3) = 6 (число фаз промышленного двигателя может быть принято m = 3).

Тогда $W_1 = 2 \cdot 6 \cdot 24 / 2 = 144$ витка.